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Abstract. Feature selection is an important but difficult task in classification,
which aims to reduce the number of features and maintain or even increase the
classification accuracy. This paper proposes a new particle swarm optimisation
(PSO) algorithm using statistical clustering information to solve feature selection
problems. Based on Gaussian distribution, a new updating mechanism is devel-
oped to allow the use of the clustering information during the evolutionary pro-
cess of PSO based on which a new algorithm (GPSO) is developed. The proposed
algorithm is examined and compared with two traditional algorithms and a PSO
based algorithm which does not use clustering information on eight benchmark
datasets of varying difficulty. The results show that GPSO can be successfully
used for feature selection to reduce the number of features and achieve similar
or even better classification performance than using all features. Meanwhile, it
achieves better performance than the two traditional feature selection algorithms.
It maintains the classification performance achieved by the standard PSO for fea-
ture selection algorithm, but significantly reduces the number of features and the
computational cost.

Keywords: Particle swarm optimisation, Gaussian distribution, Statistical clus-
tering, Feature selection.

1 Introduction

Feature selection is a process of selecting a small subset of relevant features from the
original large feature set, which can reduce the dimensionality of the data and increase
the performance of a machine learning technique (e.g. a classification algorithm). It
becomes increasingly important in data mining and machine learning because of the
advances of data collection techniques, which increases the total number of features in-
cluded in the dataset. Existing feature selection algorithms can be broadly classified into
two categories: filter and wrapper approaches [1]. Filter approaches are independent of
any learning algorithm while wrapper approaches include a classification/learning al-
gorithm as part of the evaluation function. Therefore, wrapper approaches can often
achieve better accuracy than filter approaches [1].

Feature selection is a challenging task, which has a large search space with 2n pos-
sible points, where n is the total number of features in the dataset. This leads to the
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problems of the high computational cost and stagnation in local optima in most existing
feature selection approaches. Particle swarm optimisation (PSO) [2, 3] is a powerful
global search technique, which is computationally less expensive than other evolution-
ary computation techniques such as genetic programming (GP) and genetic algorithms
(GAs) [4]. Therefore, PSO has been successfully applied to many areas, including fea-
ture selection [5–7].

Feature interaction is a common and complex problem in classification [1], which
also makes feature selection a hard problem. Feature interaction may change the re-
lationship between a feature(s) and the class labels. Due to feature interaction, an in-
dividually relevant feature may become redundant and a weakly relevant feature may
become highly useful when combining with other features. The removal or addition of
some features needs to consider the appearance or absence of other features. Therefore,
the optimal feature subset is a group of complementary features that working together
can increase the classification performance.

Many statistical measures have been applied to form the evaluation function in fea-
ture selection algorithms [8]. However, all of them are used in filter approaches. Sta-
tistical clustering methods [9, 10] can group relatively homogeneous features together
based on a statistical model. This method considers all features simultaneously and
takes feature interaction into account. Features in the same cluster are similar and they
are dissimilar to features in other clusters. Since feature interaction is an important
factor in feature selection, the statistical feature interaction information found by the
clustering method can be used to develop a good feature selection algorithm. However,
this has not been seriously investigated to date.

1.1 Goals

The overall goal of this paper is to investigate the use of statistical clustering informa-
tion in PSO for feature selection. To achieve this goal, a statistical clustering method
is performed as a preprocessing step on part of the training set to group features into
different clusters. A Gaussian based updating mechanism is developed to incorporate
the clustering information during the evolutionary process of PSO. A new PSO based
feature selection algorithm named GPSO is then developed to reduce the number of
features and increase the classification accuracy. Specifically, we will investigate:

– whether GPSO with the developed Gaussian updating mechanism can successfully
utilise the clustering information to select a small subset of features to achieve
similar or even better classification performance than using all features;

– whether GPSO can achieve better performance than the standard PSO for feature
selection without clustering information, and

– whether GPSO can outperform two traditional feature selection algorithms.

2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation (EC) technique, which imitates the social be-
haviours of birds flocking and fish schooling [2, 3]. PSO uses a swarm of particles



Gaussian Based PSO and Statistical Clustering for Feature Selection 135

to search for the optimal solution, where each particle represents a possible solution
in the search space. Each particle has a position vector, xi = (xi1, xi2, ..., xiD), and
a velocity vector, vi = (vi1, vi2, ..., viD), where D is the dimensionality. During the
evolutionary process, each particle remembers its previous best position (pbest ) and the
best position found so far by the swarm (gbest). In binary PSO (BPSO)[11], each ele-
ment in the position vector is a binary value. The velocity represents the probability of
an element in the position taking value 1. To achieve this, a sigmoid function s(vid ) is
used to transform vid to (0, 1). BPSO updates the position and velocity of each particle
according to Equations 1 and 2.

vt+1
id = w ∗ vtid + c1 ∗ r1i ∗ (pid − xt

id) + c2 ∗ r2i ∗ (pgd − xt
id) (1)

xid =

{
1, if rand() < s(vid)
0, otherwise

(2)

where

s(vid) =
1

1 + e−vid
(3)

where t denotes the t th iteration in the search process. d denotes the d th dimension
in the search space. w is the inertia weight. c1 and c2 are acceleration constants. r1i,
r2i and rand() are random values uniformly distributed in [0, 1]. pid and pgd represent
the value of pbest and gbest in the d th dimension, respectively. v t

id is limited by a
predefined maximum velocity vmax , where v t

id ∈ [−vmax , vmax ].
When using BPSO for feature selection, the dimensionality of the search space is the

total number of features in the dataset. “1” in the position vector means the correspond-
ing feature is selected and “0” otherwise [5].

2.2 Related Work on Feature Selection

A number of feature selection algorithms have been proposed, which can be seen in
[1, 5, 12]. Due to the page limit, only typical EC based feature selection algorithms and
the role of statistics are reviewed here.

EC Approaches for Feature Selection. Zhu et al. [13] proposed a feature selection
method using a memetic algorithm that is a combination of local search and GA. Ex-
periments show that this algorithm outperforms GA alone and other algorithms. Ne-
shatian et al. [14] proposed a feature ranking method for feature selection, where each
feature is assigned a score according to the frequency of its appearance in a collection
of GP trees and the fitness of those trees. Feature selection can be achieved by using the
top-ranked features for classification. Based on ant colony optimisation (ACO), Kanan
and Faez [15] developed a wrapper feature selection algorithm, which outperforms GA
and other ACO based algorithms on a face detection dataset, but its performance has
not been tested on other problems. He et al. [16] applied a binary differential evolu-
tion (BDE) algorithm to filter feature selection with a mutual information based fitness
function. However, the proposed algorithm is not compared with any other algorithm
and the datasets used include a relatively small number (maximum 56) of features. Al-
Ani et al. [17] also proposed a DE based method, where features are distributed to a set
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of wheels and DE is employed to select features from each wheel. This algorithm can
significantly reduce the number of features and improve the classification performance.

Chuang et al. [5] proposed a PSO based algorithm that resets gbest if it maintains
the same value after several iterations. The experiments on cancer-related gene expres-
sion datasets show that the proposed algorithm can select a small number of features
to improve the classification performance. Xue et al. [18] developed new initialisation
and pbest and gbest updating mechanisms in PSO for feature selection, which can
increase the classification accuracy and reduce both the number of features and the
computational time. Wang et al. [19] redefined the velocity in BPSO as the number of
elements that should be changed in the position. The experiments show that the pro-
posed approach is computationally less expensive than GA. Fdhila et al. [20] applied a
multi-swarm PSO algorithm to solve feature selection problems. However, the compu-
tational cost of the proposed algorithm is high because it involves parallel evolutionary
processes and multiple sub-swarms with a relative large number of particles. Yang et al.
[21] proposed two PSO based feature selection approaches based on two inertia weight
setting methods. The results show that the two algorithms can outperform sequential
forward search, sequential forward floating search, sequential GA and different hybrid
GAs. Xue et al. [12, 22] also proposed a PSO based multi-objective approach for feature
selection, which shows that the PSO based approach outperforms three other commonly
used EC based multi-objective algorithms, i.e. NSGAII, SPEA2, and PAES.

Javani et al. [23] applied PSO for feature selection and clustering in machine learn-
ing, where each particle is used to optimise the weights for all features and cluster center
values. feature selection is achieved by omitting features with a low weight. However,
features with a low weight may be useful because of feature interaction and the removal
may reduce the performance of the feature subset. Note that the clustering problem here
is a machine learning task which aims to group instances into different clusters. This is
different from the statistical clustering used in this paper, which aims to group features
into different clusters.

Statistics in Feature Selection. Many statistical methods can be used to reduce the di-
mensionality of a dataset [8], such as principal component analysis, linear discriminant
analysis, or canonical correlation analysis. However, most of them are not feature selec-
tion approaches because they create new features. Some researchers introduce statistical
measures to evaluate the relationship between a feature and the class labels, which are
then used in feature selection to evaluate the goodness of the selected features. Based
on a statistical discrepancy measure, Jakub Segen [24] developed a feature selection
method, which starts with the feature that best distinguishes the classes, and iteratively
adds features which in combination with the chosen features improve the classifica-
tion discrimination. Relief [25] uses a statistical method to select the relevant features,
where each feature has a score indicating its relevance to the class labels. Relief se-
lects all the relevant features. However, the selected features may still have redundancy
because Relief does not consider the redundancy between the relevant features. Many
other statistical measures such as Pearson’s correlation and least square regression er-
ror, have been used in feature selection to score the significance of features in class
separability.
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Clustering analysis is an important class of statistical techniques that can be ap-
plied to group features/variables to a number of clusters. A statistical clustering method
can group relatively homogeneous features together taking feature interactions into ac-
count [9, 10]. A statistical clustering method usually considers feature interaction in the
dataset. Therefore, the statistical feature interaction information found by a statistical
clustering method can be used to develop a good feature selection algorithm, but this
has not been seriously investigated.

Based on PSO and a statistical clustering method [9, 10] that groups features into
different clusters and similar features to the same cluster, Lane et al. [6] proposed a
feature selection algorithm, which uses PSO to select one feature from each cluster. The
results show that by selecting a representative feature from each cluster, the proposed
algorithm can significantly reduce the number of features and increase the classification
performance. This shows the the statistical clustering information (i.e. feature clusters)
can provide useful information in feature selection. Therefore, this work will also utilise
such information to further develop the new approach.

3 The Proposed Approach

We use a newly developed clustering method based on statistical models proposed by
Pledger and Arnold [9] and Matechou et. al. [10] to group features into different clus-
ters. Due to the page limit, it is not described here. The statistical clustering method
is performed as a preprocessing step on a small number of training instances to group
features into different clusters.

Features in the same cluster are considered as similar features. Therefore, to use sta-
tistical clustering information for feature selection, on one hand, a single feature can
be selected as a representative of its associated cluster. On the other hand, features
from the same cluster might still be complementary to each other, which means that
multiple features may be needed from a single feature cluster. Therefore, we want to
consider feature clustering and feature interaction information to develop a new PSO
approach to selecting features based on the obtained feature clusters, which is different
from the traditional PSO based approach that selects features based on the whole fea-
ture set. The new approach is expected to encourage the selection of a single feature
from each cluster, but when needed, it can also select multiple features from the same
cluster. However, the original updating mechanism in PSO does not consider clustering
information. Therefore, a new position updating mechanism is needed.

In PSO for feature selection, the position of a particle represents one feature subset,
but the traditional position updating mechanism PSO does not consider the clustering
information. Based on a Gaussian distribution (i.e. normal distribution) function, the
new position updating mechanism is proposed to consider the clustering information,
which first determines the number of features that will be selected from a cluster, and
then determines the selection of individual features from that cluster.

3.1 Determine the Number of Features Selected

Since a small number of features is preferred, there should be a relatively large (small)
probability to select a small (large) number of features from a given feature cluster.
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Fig. 1. The effects of the standard deviation functions upon two Gaussian distributions (colour)

Gaussian distribution is used here to determine the probability of selecting a certain
number (m) of features. Gaussian distribution is typically shown by N(μ, σ), where
μ is the mean and σ is the standard deviation. The output of the Gaussian function
is used here as the probability of selecting m of features from a cluster. In Gaussian
function, the output value is the largest when using μ as input. Since selecting only 1
feature from each cluster is the ideal case, which should have the largest probability,
μ = 1 is used here. σ determining the change of the probability is a key factor, which
should be defined according to the feature cluster size, i.e. the number of features in
this cluster. A logarithmic function using the cluster size (|clu|) as the input variable,
σ = log(10× |clu|), is used to determine σ.

Based on μ = 1 and σ = log(10 × |clu|), the Gaussian distribution function is
built to calculate the probability of selecting m (1 ≤ m ≤ |clu|) features from a given
cluster, which is shown by Equation 4.

g(m) =
exp(− (m−1)2

2log2(10×|clu|) )√
2π log(10× |clu|) (4)

Fig. 1 plots the Gaussian function shown by Equation 4, where |clu| = 5 in Fig. 1(a)
is used as a representative of a small feature cluster, and |clu| = 30 in Fig. 1(b) is used
as a representative of a large feature cluster. Fig. 1 also plots the Gaussian distribution of
using a constant σ = 4 and and a linearly changing σ (σ = |clu|/5+2), which are used
for comparison purposes to explain why σ = log(10× |clu|) is chosen here. From Fig.
1(a), it can be seen that σ = log(10× |clu|) provides a chance of selecting 1, 2, 3 or 4
features that is more even than the linear function, which favors selecting 1 or 2 features
from the small cluster. From Fig. 1(b), it can be observed that σ = log(10 × |clu|)
provides a much smaller chance for selecting more than 10 features than the other two
standard deviation functions. Therefore, fewer redundant features will be introduced
when using σ = log(10× |clu|) since features are similar within a cluster.

For a given feature cluster, a desired feature list is formed by adding the features
if a random value is smaller than s(vid). If there are |DF | features, the sum of all
the possible g(m) values should be 1. Therefore, g(m) is normalised to make sure
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∑|DF |
m=1 g(m) = 1. Based on the normalised g(m) values, a “roulette wheel selection” is

performed here to determine the value of m. Note that the “roulette wheel selection” is
performed on features within a cluster (not on individuals within a swarm/population).
It is used here to ensure that the large g(m) will have a large chance to be selected, but
the small g(m) will also have a chance to be selected (not completely ruled out).

3.2 How to Select Features

When using PSO for feature selection, each feature corresponds to one dimension in the
position and velocity. “1” in the position means the corresponding feature is selected.
Selecting m features from a cluster means m dimensions in the position are updated to
“1” and all other dimensions in the same cluster are updated to “0”.

In the proposed algorithm, m features are chosen based on the maximum probability
mechanism, where the motivation is that the velocity in PSO represents the probability
of the corresponding dimension taking value “1” [11]. In terms of feature selection, the
velocity represents the probability of a feature being selected. Therefore, the m features
with the highest velocity in a certain cluster should have the largest probability to be
selected.

3.3 An Example

Taking a cluster with 30 features as an example, the following steps show the process of
the proposed Gaussian position updating procedure. The elements in the position that
correspond to other clusters are updated in the same way.

– Step 1: Build the Gaussian function g(m) using μ = 1 and σ = log(10× 30);
– Step 2: Build a set of desired features DF : add feature i to the desired feature list

if a random value is smaller than 1
1+e−vid

;
– Step 3: Calculate the g(m) values with m = 1, 2, 3, ...|DF | and normalise them;
– Step 4: Based on the normalised g(m) values, the “roulette wheel selection” is

performed to determine the value of m;
– Step 5: Update the position of the m dimensions with the largest velocities to “1”

and all other dimensions in the same cluster to “0”.

Based on the proposed Gaussian updating mechanism, we develop a new PSO ap-
proach (named GPSO) to incorporate the statistical clustering information to address
feature selection problems.

4 Experimental Design

A set of experiments have been conducted to examine the performance of the proposed
algorithm (GPSO). Eight benchmark datasets shown in Table 1 were chosen from the
UCI machine learning repository [26], which have different numbers of features, classes
and instances. The instances in each dataset are split randomly into a training set (70%)
and a test set (30%). The statistical clustering method used here was taken from a re-
cently developed algorithm [9, 10], which is not described here due to the page limit.
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Table 1. Datasets

Dataset No. of features No. of clusters No. of classes No. of instances
Wine 13 6 3 178
Vehicle 18 6 4 846
Ionosphere 34 11 2 351
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

A small number (less than 500) of training instances are used in the statistical clustering
method to speed up the clustering process, which is part of the training set on datasets
such as Madelon. The number of clusters obtained are listed in the third column of
Table 1.

A standard BPSO based feature selection algorithm (PSOFS), which does not con-
sider the statistical clustering information as GPSO, is used as a baseline algorithm to
test the performance of GPSO. In all the two PSO based methods, K-Nearest Neighbour
(KNN) with K=5 is used in the fitness function to evaluate the classification accuracy
of the selected features. The parameters are set as follows [3]: w = 0.7298, c1 = c2 =
1.49618, vmax = 6.0, the population size is 30, the maximum number of iterations is
100 and the fully connected topology is used. The algorithms have been conducted for
40 independent runs on each dataset. The non-parametric statistical significance test,
Wilcoxon test, is performed between the testing classification performance of a PSO
algorithm and all features. The significance level is selected as 0.05 (or confidence in-
terval is 95%).

To further examine the performance of the proposed algorithms, we also compare
them with two traditional feature selection methods, which are linear forward selec-
tion (LFS) [27] and greedy stepwise backward selection (GSBS). LFS and GSBS were
derived from two typical feature selection algorithms, i.e. sequential forward selection
(SFS) and sequential backward selection (SBS), respectively. LFS [27] restricts the
number of features that are considered in each step of the forward selection, which can
reduce the number of evaluations. Therefore, LFS is computationally less expensive
than SFS and can obtain good results. The greedy stepwise feature selection algorithm
implemented in Weka [28] can move either forward or backward. Given that LFS per-
forms a forward selection, a backward search is chosen in greedy stepwise search to
form a greedy stepwise backward selection (GSBS). GSBS starts with all available fea-
tures and stops when the deletion of any remaining feature reduces the classification
accuracy.

5 Results and Discussions

Table 2 shows the experimental results of PSOFS, GPSO, where “All” means that all of
the available features are used for classification, “AveSize” shows the average number
of features selected in the 40 independent runs, “AveAcc”, “BestAcc” and “StdAcc”
shows the average, the best and the standard deviation of the 40 testing accuracies.
“Test” shows the results of the Wilson significance tests, where “+” (-) means PSOFS,
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Table 2. Experimental Results

Dataset Method AveSize BestAcc AveAcc ± StdAcc Test Time

Wine

All 13 76.54
PSOFS 8.32 97.53 95.96 ± 1.8725 + 0.25
GPSO 5.38 98.77 96.7 ± 2.7521 + 0.18

Vehicle

All 18 83.86
PSOFS 9.28 85.83 84.3 ± 0.6194 + 8.13
GPSO 8.92 85.24 84.26 ± 0.5962 + 4.51

Ionosphere

All 34 83.81
PSOFS 10.38 93.33 89.05 ± 1.8444 + 1.36
GPSO 7.5 94.29 89.26 ± 1.6631 + 0.92

Sonar

All 60 76.19
PSOFS 24.72 87.3 79.52 ± 2.9222 + 0.75
GPSO 17.75 87.3 78.49 ± 3.7217 + 0.68

Musk1

All 166 83.92
PSOFS 83.6 89.51 85.65 ± 2.102 + 10.09
GPSO 39.6 89.51 84.91 ± 2.5641 = 3.56

Arrhythmia

All 279 94.46
PSOFS 119.35 95.14 94.57 ± 0.3351 = 11.82
GPSO 45.9 95.7 94.86 ± 0.355 + 3.83

Madelon

All 500 70.9
PSOFS 244.68 78.85 76.83 ± 1.2334 + 866.47
GPSO 36.25 87.82 85.61 ± 1.0066 + 137.67

Multiple Features

All 649 98.63
PSOFS 295.52 99.2 99 ± 0.0962 + 726.19
GPSO 92.25 99.27 99.02 ± 0.1258 + 112.94

GPSO is significantly better (or worse) than “All”, and “=” means they are similar (no
significant difference). The last column shows the average computational time used by
the two PSO algorithms in a single run, which is expressed in minutes.

5.1 Results of GPSO

According to Table 2, it can be seen that the feature subsets selected by GPSO achieved
significantly higher classification accuracy than using all features on all datasets. Fur-
thermore, on all datasets, GPSO selected fewer than half of the original features, which
is less than 20% on the datasets with a large number of features, i.e. the Arrhythmia,
Madelon and Multiple Features datasets. For example, on the Madelon dataset, GPSO
selected on average only around 7.2% of the original features (36.08 out of 500) and
increased the classification accuracy from 70.9% to on average 85.61%.

Compared with PSOFS which does not use the statistical clustering information,
it can be seen that GPSO achieved similar or even better classification performance
than PSOFS, but the average number of features selected by GPSO is smaller or much
smaller than PSOFS in all datasets. On the three datasets with more than 200 features,
i.e. Arrhythmia, Madelon and Multiple Features, GPSO further reduced more than 60%
of the feature selected by PSOFS, but still achieved slightly better classification perfor-
mance than PSOFS. The reason is that on such large datasets, GPSO further removed
redundant and irrelevant features, which reduced the complexity of the problem and
increased the classification performance on unseen test data.

The results suggest that by developing the new Gaussian based updating mecha-
nism in PSO, GPSO can successfully use the statistical clustering information to ad-
dress feature selection problems. GPSO reduced the dimensionality of the datasets and
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Table 3. Further Comparisons

Method
Wine Vehicle Ionosphere Sonar

Size Accuracy Size Accuracy Size Accuracy Size Accuracy
LFS 7 74.07 9 83.07 4 86.67 3 77.78
GSBS 8 85.19 16 75.79 30 78.1 48 68.25

Method
Musk1 Arrhythmia Madelon Multiple Features

Size Accuracy Size Accuracy Size Accuracy Size Accuracy
LFS 10 85.31 11 94.46 7 64.62 18 99.0
GSBS 122 76.22 130 93.55 489 51.28

simultaneously increased the classification performance in all cases, and also outper-
formed the standard PSO based feature selection algorithm, PSOFS.

5.2 Comparisons on Computational Time

According to Table 2, it can be seen that GPSO finished the evolutionary training pro-
cess within 6 minutes in almost all cases, except on the Madelon and Multiple Features
datasets, where a large number of features and instances are involved. Since the number
of features selected by GPSO is much smaller than all the original features, the testing
classification time will also be significantly reduced over using all the original features.

GPSO used a much shorter time than PSOFS on all datasets. The main reason is that
as wrapper approaches, their computational time was mainly spent on evaluating the
classification performance of the selected features, where a small number of features
used a shorter time than a large number of features. GPSO selected a much smaller
number of features than PSOFS, so its evaluations are much faster than PSOFS, espe-
cially on the large datasets. Note that although GPSO involves the statistical clustering
process, this process is very fast since it is only performed on a part of the training
examples. The computational time used by PSOFS is longer than the total time used by
the statistical clustering method and GPSO.

5.3 Further Comparisons with Traditional Methods

Both LFS and GSBS are deterministic algorithms and only a single solution is obtained
on each dataset, where the results are shown in Table 3. The results of using GSBS on
the Multiple Features dataset are not available because the dataset is too big and the
training process took too long time to finish.

Comparing Table 3 with Table 2, it can be seen that the number of features selected
by LFS is usually smaller than GPSO, but GPSO achieved significantly better classi-
fication performance than LFS on almost all datasets. GPSO outperformed GSBS in
terms of both the number of features and the classification performance on all datasets.

The results show that GPSO based on PSO and the feature clustering information can
better explore the solution space to obtain better feature subsets than LFS and GSBS.
In terms of the computational time, GPSO is slower than LFS because LFS selected a
smaller number of features, but it is faster than GSBS on datasets with a relative large
number of features.
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6 Conclusions and Future Work

The goal of this paper was to develop a new approach to using the statistical clustering
information in PSO for feature selection. The goal was successfully achieved by devel-
oping a new Gaussian based updating mechanism to propose a new algorithm named
GPSO. GPSO was examined and compared with two traditional feature selection algo-
rithms (LFS and GSBS) and a standard PSO based feature selection algorithm (PSOFS)
on eight benchmark datasets of varying difficulty. The results show that GPSO can suc-
cessfully use the statistical clustering information to select a small subset of features and
achieve similar or significantly better classification performance than using all features
on all the eight datasets. GPSO achieved significantly better classification performance
than LFS, although the number of features is slightly larger. It outperformed GSBS in
terms of both the number of features and classification accuracy. GPSO achieved similar
classification performance to PSOFS, but selected a much smaller number of features
and used a much shorter time. Compared with the original features, GPSO achieved
significantly better classification performance, and reduced the number of features to
an order of magnitude on the large datasets.

This work shows that statistical clustering information can be successfully used to
improve the performance of a PSO based feature selection algorithm. The successes
of GPSO provides motivations to further explore the use of statistical methods with
evolutionary computation techniques to solve feature selection problems. For exam-
ple, statistical clustering information and PSO can be used for multi-objective feature
selection or for feature construction.
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